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History forces and the unsteady wake
of a cylinder
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(Received 12 December 1997 and in revised form 11 March 1999)

History forces on a stationary cylinder in arbitrary unsteady rectilinear flow are
calculated by means of a model based on the asymptotic properties of the steady-state
wake. The results capture many features found in numerical solutions of the Navier–
Stokes equation for the same flows, though quantitative agreement deteriorates as
the Reynolds number increases over the range 2 to 40. The cases studied are the
impulsive start, stop, and reverse, and oscillatory flow.

1. Introduction
In conditions where both drag and inertia forces are important, the in-line loading

on a bluff body in unsteady flow can be predicted in general only by numerical
modelling or by Morison’s equation. The latter (Morison et al. 1950) was seen initially
as a temporary approximation for wave loading on cylinders, but its robustness and
simplicity have given it lasting appeal. It relies on knowledge of appropriate drag and
inertia coefficients – on which a considerable volume of data is now available – and the
fact that it does not address vortex shedding forces directly is often unimportant. But
the implicit assumption that the loading depends only on the instantaneous velocity
and acceleration gives rise to other shortcomings, and its empirical success should not
be considered a justification for neglecting some interesting and important features
of the flow and the loading.

Examples of the limitations of Morison’s equation are not difficult to find, and an
obvious one is the case of a body brought rapidly from rest to a steady velocity.
According to Morison’s equation, the loading will at once achieve a steady state as
soon as the acceleration of the incident flow ceases. This is clearly not the case in
reality, since the flow takes much longer to reach a steady, or quasi-steady, state, and
appreciable changes occur in the in-line force until the surrounding fluid has travelled
several diameters past the body. Another example is that of a body in a flow that
reverses. In this case the incident flow is initially enhanced by the velocity deficit of
the old wake, contributing to the well-known sensitivity of Morison force coefficients
in harmonic flow to the amplitude and frequency of the motion, or in other words,
to the Keulegan–Carpenter number, a parameter that has no obvious counterpart in
more general conditions.

A force that is obviously missing in Morison’s equation is that associated with
the history of the flow. Comments to this effect can be found in the literature from
the earliest days of research into problems related to wave loading on cylinders,
but very few authors have pursued the subject further than a reference to Basset’s
(1888) classical result for the history force on a sphere at zero Reynolds number.
However, more recently, progress has been made in understanding history forces on
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small particles, bubbles and droplets in conditions where the elementary particle can
be assumed to be spherical, and Reynolds numbers may be of order 1. The present
paper aims to transpose some of these ideas to the analytically much less promising
case of two-dimensional flow around a cylinder, for which history forces have received
scarcely any previous attention.

2. Previous work and present objectives

The earliest mention of history forces is usually attributed to Basset (1888, vol. 2,
p. 291, equation 18), although the same result had been derived earlier by Boussinesq
(1885a, b, see Vojir & Michaelides 1994). The outcome was the same, and is generally,
if unfairly, referred to as the Basset history force. When applied to the case of a
stationary sphere in a fluid moving with velocity U (t) this results in the following
formula for the total force on the sphere:

F (t) = 6πµcU (t) + 2πρc3U̇ (t) + 6ρc2
√
πν

∫ t

−∞
U̇ (τ)√
t− τdτ, (1)

where µ is the coefficient of dynamic viscosity, c the sphere’s radius, ρ the fluid density
and ν = µ/ρ. The first term represents the linear (Stokes) drag, the second term is the
inertia force (corresponding to an added-mass coefficient of 1

2
), and the third term is

the history force. The physical meaning of this is that each change in velocity U̇dt has
an effect on the loading that subsequently decays with the inverse square root of time.

Basset’s analysis for the force on a sphere neglects convective terms in the equation
of motion and is therefore likely to be valid only at small Reynolds numbers. In steady
flow, Stokes’ law (the first term of (1)) is reasonably accurate up to Reynolds numbers
Re of around 1, and to some extent the Oseen approximation F = 6πµcU(1 + 3Re/8)
provides an advance on this by including some features of the convective terms. Steps
towards including the convective terms fully were made by Proudman & Pearson
(1957), and later Sano (1981) extended their result to the case of a sphere brought
impulsively into steady motion from rest. In this case the force approaches its steady
value as t−2 and not as t−1/2 as indicated by (1). Several other types of motion were
considered by Lovalenti & Brady (1993), who showed that impulsive starts, stops,
reverses, and changes in velocity without reverses all led to history terms with different
rates of decay.

In an appendix by Hinch (1993) the form of Lovalenti & Brady’s history forces is
extracted from much simpler physical concepts related to the overall structure of the
flow. This global or asymptotic approach provides a useful reference point for more
detailed analyses, and forms one element of a series of papers by Mei, Lawrence
& Adrian (1991), Mei (1993, 1994), Lawrence & Mei (1995), Mei & Lawrence
(1996), concerned with the flow field and the loading on a sphere in unsteady flow
at small Reynolds numbers. Results of numerical solutions of the Navier–Stokes
equations were compared with these semi-analytical predictions to show generally
good agreement on both flow and forces. The subject is reviewed by Michaelides
(1997).

In an experimental test of the Basset history force, Odar & Hamilton (1964)
oscillated a sphere in oil initially at rest at Reynolds numbers up to 62. They
compared force measurements with a version of Morison’s equation that included a
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history force term with a new coefficient Ch:

F = Cd
1
2
ρπc2U|U|+ Ca

4
3
ρπc3U̇ + Chc

2ρ
√
πν

∫ t

0

U̇(τ)√
t− τdτ. (2)

The drag coefficient Cd was taken to be that corresponding to the Reynolds number of
the instantaneous velocity, and the other two coefficients were computed by fitting the
predicted forces to the measurements and were plotted as functions of the ‘acceleration
number’ U2/2c U̇. Some further discussion on the same approach can be found in
Hamilton (1972).

The only previous work explicitly on history forces on a cylinder seems to be that
by Matsumoto (1996), who derived an approximate linearized general solution for the
flow induced by the wake at the cylinder, and from it obtained results for the loading.
Predicted velocities and forces were compared with measurements, with rather mixed
results. An alternative approach is to analyse measured force records with the aid of
System Identification techniques, as carried out by Stansby et al. (1992) and Worden,
Stansby & Tomlinson (1994) with reference to wave forces on a vertical cylinder. This
work was based on an extension to Morison’s equation to include Duffing oscillator-
type force terms that involve the first and second rates of change of the force. The
model was found to provide excellent agreement with measured force records, but was
not very successful at predictions, when only the input (i.e. the kinematics of the flow)
was known. A disadvantage of this type of approach is that the results cannot be
related to physical processes, and therefore may not be robust, or able to be gracefully
modified for different conditions. A related handicap is one simply of dimensions.
If the kernel of a history force term were found from a set of measurements to be
of the form (t − τ)−1/2 say, a group of dimensional parameters has to be found to
relate the result to a force per unit length (for the cylinder problem). This can always
be achieved by involving the viscosity (as in (2)), but at high Reynolds numbers
there has to be an asymptotic form that is independent of the viscosity – in the same
way that the drag on a bluff body ultimately becomes independent of the Reynolds
number. This leaves only the kinematics of the problem – the velocity record and the
cylinder’s diameter – from which to construct the remainder of the history term. It
seems unlikely that this could be done purely from the results of signal processing.

This paper sets out to adapt the asymptotic models of Hinch and Mei & Lawrence
to the two-dimensional case of flow past a circular cylinder where prospects for
analysis are hampered by the absence of counterparts of the Stokes and Basset
solutions for steady and unsteady flow past a sphere. Uniquely, asymptotic models
offer a rational approach to an understanding of history forces on a cylinder and
they are therefore worth pursuing, even if, as seems likely from the outset (and is
found to be the case), quantitative predictions are generally not very good except at
very low Reynolds numbers. The results for several types of motion are compared
with numerical solutions obtained with a time-stepping Navier–Stokes code that is
described in § 3. Section 4 considers the elements of the steady-state wake, and § 5
considers the effects of impulsive changes in the incident flow. An asymptotic model
is formulated that in § 6 is generalized to cover the case of a continuously changing
incident flow. Agreement with numerical solutions is observed over a smaller range
of conditions than in the case of a sphere.

3. The Navier–Stokes code
The Navier–Stokes code used in the present work is basically similar to that

described in Chaplin (1993), using a finite difference spectral method to solve for the
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stream function ψ(r, θ, t) and vorticity ω(r, θ, t) with

∂ω

∂t
+

1

r

(
∂ψ

∂θ

∂ω

∂r
− ∂ψ

∂r

∂ω

∂θ

)
=

2

Re
∇2ω, (3)

ω = −∇2ψ, (4)

where (r, θ) are cylindrical coordinates centred on the cylinder, and velocity com-
ponents are vr = (1/r)∂ψ/∂θ, vθ = −∂ψ/∂r. All quantities are normalized by taking

the cylinder’s radius c, the speed of a reference incident flow Û, and ρÛ2 as length,
velocity, and stress scales, and Re = 2Ûc/ν. To achieve a helpful distribution of
mesh points in the radial direction, the computation is carried out on a mesh on the
(x1, θ)-plane, where the mapping between r and x1 is (Mei 1993)

r = 1 + (rE − 1){1− cr tan−1 [(1− x1) tan(1/cr)]}. (5)

On the cylinder’s surface, r = 1, x1 = 0, and at the outer limit of the circular
computational domain, r = rE, x1 = 1. Finite difference mesh points are located at
equal increments δx1 in x1, and their distribution in r is determined by the factor cr
which was set to 0.642 as in comparable cases in Mei (1993). The transformation (5)
is more efficient than the exponential expansion r = exp x1 at providing a suitably
high resolution close to the cylinder at the same time as a large value of rE .

The stream function and vorticity are expanded in terms of spatial frequency
components:

ψ(x1, θ, t) =

J∑
j=1

gj(x1, t) sin jθ, (6)

ω(x1, θ, t) = −
J∑
j=1

Gj(x1, t) sin jθ, (7)

imposing the restraint that the flow remains symmetrical about θ = 0. The substitution
of (6) and (7) into (3) produces a formula for the time derivative by which the stream
function coefficients gi,j can be updated from time level t to time level t + δt. This
is applied in a fully centred implicit iterative Crank–Nicholson scheme at each time
step. The boundary conditions for the stream function are provided by ψ = 0 on
r = 1, and ∂ψ/∂r = rU cos θ on r = rE where U is the normalized instantaneous
incident flow, and those for the vorticity are obtained by a Woods condition on the
cylinder, and by putting ω(x1 = 1) = ω(x1 = 1 − δx1). In the solutions described
below the parameters (rE, δx1, J, δt) were (1200, 1/100, 40, 0.005), (1200, 1/257, 75,
0.005), (1200, 1/257, 150, 0.005) for Re = 2, 10, 40 respectively, except during ramped
changes of velocity when δt = 0.0005. Convergence tests were carried out at Re = 40.
For cases in which the outer radius was halved (600, 1/129, 150, 0.005), the radial
resolution was halved (1200, 1/129, 150, 0.005), the number of frequencies was halved
(1200, 1/257, 75, 0.005), or the time step was doubled (1200, 1/257, 150, 0.01), the
effect on the drag at t = 250 was less than 0.7%.

The force on the cylinder is the sum of shear and pressure contributions, and can be
derived directly from the fundamental frequency components of the vorticity and of
the radial vorticity gradient at the cylinder’s surface. The drag coefficient is given by

Cd =
2π

Re
(G1(0, t)− G′1(0, t)), (8)
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Cd

in Zdravkovich Dennis & Chang Fornberg
Re (1997) (1970) (1980) Present work

1 10.28
2 6.637 6.649
4 4.437
6 3.565
7 3.291 3.421

10 2.754 2.846 2.752
15 2.266
20 2.003 2.045 2.000
40 1.536 1.522 1.498 1.491

100 1.056 1.058

Table 1. Drag coefficients for steady symmetrical flow past a cylinder.

and for this purpose the radial gradient of G1 was estimated by a fourth-order forward
difference formula.

Computed steady-state drag coefficients are shown in table 1, with some others from
the literature, including results of Keller & Takami (1960), Keller (1958), Takami &
Keller (1969) and Nieuwstadt & Keller (1973) summarized by Zdravkovich (1997, ta-
ble 8.2). The latter are in good agreement with the present data at Re = 2 and 10, while
at Re = 40 a better match is observed with computations by Fornberg (1980), who
also reviewed drag coefficients from several other sources. In analysis presented later it
is helpful to be able to express Cd as a continuous function of Re that passes through
the present results, and for this purpose additional values were taken from those cited
by Zdravkovich up to Re = 20, and those of Fornberg from Re = 20 to 100. These
data provided a consistent set to which a curve could be fitted as described below.

Lamb’s theory for a cylinder in creeping flow (Batchelor 1967, p. 246) gives

Cd = 8π/[Re ln(7.4/Re)]. (9)

At Re = 0.01 this meets, and has a common tangent with, Cd = 7.638 Re−0.849. For
present purposes, reference drag coefficients will be determined from (9) for Re < 0.01,
and

Cd(Re) = 7.638Re−0.849 exp[0.0400 log3(Re/0.01)− 0.000611 log5(Re/0.01)] (10)

for Re > 0.01. This is a close fit to the present data and those mentioned above.
In computing impulsive changes in fluid motion over solid boundaries it is necessary

to give careful attention to the singular nature of the initial flow, and for this reason
it would be wrong to model an impulsive start by simply applying the boundary
condition U = 0 (t < 0), U = 1 (t > 0) in the numerical scheme outlined above. As
pointed out by Collins & Dennis (1973) this would ignore the boundary layer structure
of the flow, and whatever the resolution of the finite difference solution, it will not
be able to capture the starting motion. A correct approach (described by Collins &
Dennis) is to start the solution on an expanding mesh with a scale r ∼ 2

√
2t/Rex1,

and then switch over to a fixed mesh after the first few time steps. This technique was
followed here for the validation exercise described below, but otherwise rapid changes
in velocity were more conveniently imposed over a finite time interval ∆t, following a
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Ramped start : Dt = 0.01

Ramped start : Dt = 0.1

(a)
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polynomial expansion
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scheme
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t

Figure 1. The drag coefficient of a cylinder following ramped and impulsive starts at (a) Re = 10 and
(b) 40. Computation of the ramped starts followed the method of § 3, with initial velocity histories
defined by equation (11) with U1 = 0, U2 = 1, and ∆t = 0.01 or 0.1. Results for impulsive starts that
are shown as continuous lines were obtained with a separate code based on the expanding-mesh
scheme of Collins & Dennis (1973). Those shown as broken lines were computed directly from the
polynomial expansion given by Collins & Dennis (1971).

smooth ramp of the form

U = U1 + (U2 −U1) sin2

(
πt

2∆t

)
. (11)

It seems reasonable to expect that with ∆t = 0.01 or 0.1, the flow after times of order
1 would be essentially the same as that following a truly impulsive change. As a test
of this, figure 1 compares computed drag coefficients following ramped starts using
equation (11) with U1 = 0, U2 = 1, with those obtained from a numerical solution
using the expanding mesh scheme of Collins & Dennis (1973). Agreement is very
close from about t = 1 suggesting that no serious inconsistencies will follow from
the assumption that after this time interval, such ramped and impulsively changed
flows would be essentially the same. The analytical solution for an impulsive start
by Collins & Dennis (1971, equations (80) and (81)) is also shown in figure 1 as a



History forces and the unsteady wake of a cylinder 105

(a)

U1

Q1

Q1

(b)

Q2

U2

Q2
Q1

Q2 – Q1

TZ

x = 0 x = U2t

Figure 2. The structure of the flow (a) before and (b) after an impulsive change in the speed of
the incident flow from U1 to U2. The corresponding wake fluxes are given by equation (13).

broken line for each Reynolds number. This is valid up to t ∼ 0.5 for high Reynolds
numbers but is evidently significantly in error for those as low as 10 and 40.

4. The steady-state wake
Consider first the dominant features of a steady-state wake behind a cylinder in a

steady flow. Length and velocity scales are defined as Û and c, as in § 3. The normalized
streamwise velocity at a point x downstream from the cylinder is U + u(x, y), where
U is the speed of the incident flow, and within the central region of the wake u < 0.
This reduction in the flow out of a large control volume surrounding the cylinder
(shown in figure 2a) tends to a constant at large x, defined as

Q = −
∫ ∞
−∞
u(y)dy, (12)

and is balanced by a flow that appears at large distances to be due to an irrotational
source of the same strength at the cylinder. The dominant components in the integral
momentum equation applied to a control volume that cuts the wake a large distance
downstream are those that represent the rate of change of momentum and the drag
(Batchelor 1967, p. 351). In dimensionless terms this implies

Q = CdU (13)

for x� 1, or x = X/ε where ε is a small parameter and X is O(1). A limiting form for
the streamwise flow in the steady state wake (Batchelor 1967, p. 349) can be written
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(d ) Re = 40, x = 100
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Figure 3. Streamwise velocity profiles across the steady-state wake. The asymptotic profile (14) is
compared with results of the Navier–Stokes code at t = 500 after the start. A second broken line
shows the combination of (14) with a source of strength Q (given by (13)) at the cylinder.

as

u = −Cd
√

Re

8πx
exp

(
−y

2Re

8x

)
. (14)

As a preliminary to carrying out a similar exercise for the case of an unsteady wake,
we consider the conditions under which (14) is valid, starting with the normalized
steady-state vorticity transport equation

(U + u)
∂ω

∂x
+ v

∂ω

∂y
=

2

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (15)

This equation may be re-scaled by putting x = X/ε, y = Y /
√
εRe, u = ûCd

√
εRe, v =

v̂Cdε and ω = ω̂CdεRe, where Y , û, v̂ and ω̂ are all expected to be O(1). The result is

U
∂ω̂

∂X
+ Cd

√
εRe

(
û
∂ω̂

∂X
+ v̂

∂ω̂

∂Y

)
=

ε

Re

∂2ω̂

∂X2
+
∂2ω̂

∂Y 2
, (16)

which can be approximated as U∂ω̂/∂X= ∂2ω̂/∂Y 2 when Cd
√
εRe�1 and ε/Re�1.

The corresponding solution for the streamwise velocity is then (14). Both inequalities
are satisfied when x � 1/Re (in conditions where (9) applies), or when x � Re (at
higher Reynolds numbers where Cd is O(1)).

The profile (14) is plotted across the wake in figure 3 at x = 10 and 100, at Re = 2
and 40, and compared with the results of the Navier–Stokes code at t = 500, by
which time conditions at these sections had become essentially steady. Also shown
is the result of a combination of (14) and a source of strength Q (from 13)) located



History forces and the unsteady wake of a cylinder 107
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Figure 4. Terms on the left-hand side of equation (16) evaluated at sections across the wake.

Lines denoted (1), (2) and (3) refer to the terms U ∂ω̂/∂X, Cd
√
εRe û ∂ω̂/∂X and Cd

√
εRe v̂ ∂ω̂/∂Y

respectively. These results were computed from the Navier–Stokes code at t = 500 after the start.
The broken lines represent the sum of terms (2) and (3) at each elevation Y .

at the cylinder. As expected, agreement between numerical and asymptotic solutions
improves with x and deteriorates with Re.

At x = 100 the results are perhaps closer than might be anticipated from the
corresponding values of the factor Cd

√
εRe in the left-hand side of (16) – about 0.9 at

both Reynolds numbers. To see the reason for this, the contribution of each term on
the left-hand side of (16) is shown in figure 4 for the same conditions as in figure 3,
having been obtained from numerical solutions and scaled as described above, with
ε = 1/x. The importance of the terms u∂ω/∂x and v∂ω/∂y in (15) is evidently reduced
first by the fact that they are predominantly of opposite signs. Secondly, in proportion
to U∂ω/∂x, their magnitudes are smaller than those indicated by the re-scaling,
presumably because of the presence of multipliers that are significantly different from
unity. According to the approximate solution (14), û is about 1/

√
8π = 0.2, and

U∂ω̂/∂X is in the region of (3/32)
√

2/π = 0.075. These results suggest that the
consequences of simplifying (15) as described above may, in some respects, be less
restrictive than indicated by the formal analysis.

Nevertheless, at Reynolds numbers above about 1, the near wake is influenced
by strong shear layers which maintain a large reverse flow on the axis. Figure 5
shows wake centreline velocities at Re = 2, 10 and 40 obtained from the Navier–
Stokes code at t = 500. These are compared with the sum of the wake profile (14)
and a source of strength Q at the cylinder. To obtain a reasonable match with the
numerical results while satisfying the boundary condition on the rear face of the
cylinder (u = −1 at x = 1), both the origin of the wake and the position of the source
were shifted from the centre of the cylinder. The source was placed at x = 0.3 in each
case, and the origin of the wake was at x = 0.454,−0.097 and −0.970 at Re = 2, 10
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(a)

Re = 21.0

0.1

10

–u

1 100 1000

(b)

Re = 101.0

0.1

101 100 1000

(c)

Re = 401.0

0.1
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x x x

Figure 5. Wake centreline velocities. The lines are computed from the asymptotic wake profile (14)
combined with a source at the cylinder. The locations of the origin of the wake and the source are
given in the text. The points are from results of the Navier–Stokes code at t = 500 after the start.

and 40 respectively. Agreement with the numerical results deteriorates with increasing
Reynolds number, and could not be improved significantly by any other choice of
the location of the source or wake.

Much better agreement at all points in the steady wake was found by Mei &
Lawrence (1996) for the case of a sphere at Reynolds numbers in the range 1 to
100. This can be associated with the fact that in the three-dimensional case the wake
Reynolds number (formed from the centreline velocity and the wake width) decays
as x−1/2, whereas in the two-dimensional case it remains constant. Nevertheless, the
asymptotic approach seems to provide a worthwhile starting point for a simple model
of wake flow of a cylinder in unsteady conditions, as developed below.

5. Effects of an impulsive change in the incident flow
This Section follows the arguments in Hinch (1993) and Mei & Lawrence (1996)

to identify the global features of the flow around a cylinder that experiences a single
impulsive change in the incident velocity. Comparisons are made with predictions of
the Navier–Stokes code described in § 3. Consider first the case of a cylinder in a
flow whose velocity at t = 0 impulsively changes from U1 > 0 to U2 > 0. Before the
change the flow is fully developed and its structure is as shown in figure 2(a), and
Q1 = Cd1U1c, where Cd1 is the drag coefficient corresponding to the Reynolds number
2U1c/ν. After the change, there must exist a transition zone between the old and
new wakes at x = U2t. Upstream of the transition zone there is a reversed flow of
Q2, and downstream one of Q1. If Q2 > Q1 (corresponding to an increase in ambient
velocity), the balance must be supplied by an inflow to the transition zone that at
large distances appears as a sink of strength Q2−Q1 located there, as shown in figure
2(b). The origin of the old wake (to the right of the transition zone), stationary when
the incident flow was U1, now moves with velocity U2 −U1.

When seen from a reference frame moving with velocity U2, the flow in the region
of the transition zone can be considered as the sum of one part which is associated
with the asymptotic profiles of the old and new wakes to the right and left, and
an second part (whose length and velocity scales are isotropic) associated with the
diffusing transition zone between them. The streamwise velocity components of both
must have similar magnitudes, so the total can be written u = (û+ û′)Cd

√
εRe, where

û′ represents the part due to the transition zone. Similarly, the transverse velocity is
now v = v̂Cdε + v̂′Cd

√
εRe. The length and time scales of the flow in the transition
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Figure 6. Values of each of the three terms on the left-hand side of the vorticity transport equation
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

2

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
for a reference frame travelling with the ambient flow,

(computed from results of the Navier–Stokes code and labelled (1), (2), (3) respectively) are plotted
across the wake through the centre of the transition zone x = t, where t is the elapsed time since the
flow started from rest. The broken lines represent the sum of terms (2) and (3) at each elevation Y .

zone are (εRe)−1/2 and ε−1, and scaled coordinates are accordingly introduced by
x′ = ξ/

√
εRe, y = η/

√
εRe, ω = ω̂′CdεRe, and t = T/ε, where x′ = x−U2t.

On substituting into the vorticity transport equation, and removing the terms on
the left- and right-hand sides identical to those in (16), what remains is

∂ω̂′

∂T
+ Cd

√
εRe

(
û′
∂ω̂

∂X
+ v̂

∂ω̂′

∂η

)
+ CdRe

(
û
∂ω̂′

∂ξ
+ û′

∂ω̂′

∂ξ
+ v̂′

∂ω̂

∂Y
+ v̂′

∂ω̂′

∂η

)
=
∂2ω̂′

∂ξ2
+
∂2ω̂′

∂η2
. (17)

The second term on the left-hand side can be neglected under conditions mentioned
previously, but it appears that no such arguments will support discarding the third
term. In this respect the two-dimensional case differs from the axisymmetrical one
(Mei & Lawrence 1996) in which, under certain conditions, all the convective terms
can formally be shown to be negligible.

However (as in the steady state), the numerical importance of the convective terms
in the present case may be less than that suggested by (17) (see figure 6), and it
is worth exploring the validity of predictions for the unsteady wake based on the
linearized vorticity transport equation

∂ω

∂t
=

2

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(18)

(applied on a reference frame moving with the ambient flow), with boundary condi-
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tions to match the asymptotic wake profiles on either side. The solution is derived in
the Appendix, leading to the following equation (obtained from the first two terms on
the right-hand sides of (A 15) and (A 16)) for the streamwise velocity at an arbitrary
point (x, y) due to the transition zone at x = U2t:

uz(x, y, t) = (Q2 − Q1)

{
x′

2π(x′2 + y2)

[
exp

(−(x′2 + y2)

4νt

)
− 1

]

+
erf(x′/2

√
νt)− sgn(x′)

4
√
πνt

exp

(−y2

4νt

)}
, (19)

where sgn(x) = x/|x|.
There are two other contributions to the streamwise velocity at an arbitrary point.

The first is provided by the asymptotic wake profile on either side of the transition
zone

uw(x, y, t) = −Q2

√
U2

4πνx
exp

(
−U2y

2

4νx

)
for 0 < x < U2t, (20)

uw(x, y, t) = −Q1

√
U1

4πν[x− (U2 −U1)t]
exp

(
− U1y

2

4ν[x− (U2 −U1)t]

)
for x > U2t.

(21)
(When uw is added to uz, velocity discontinuities at x = U2t are eliminated.) The final
contribution is the effect of the source at the cylinder

us(x, y, t) =
Q2x

2π(x2 + y2)
. (22)

At the centre of the transition zone x = U2t, approached in either direction, the
streamwise flow is just the average of those due to the wakes on each side:

uz(U2t, y, t) + uw(U2t, y, t) = −Q1 + Q2

4
√
πνt

exp (−y2/4νt). (23)

The start

Following an impulsive start (U1 = 0), a global model for the flow consists of the
transition zone at x = U2t, the asymptotic wake 0 < x < U2t, and the source at the
cylinder. The stream function can be obtained from (19–22) by integration, and figure
7 compares the resulting streamlines (after the incident flow has been subtracted) with
those from the Navier–Stokes code at Reynolds numbers 2 and 40, at times 10 and 100
after an impulsive (or in the latter method, a ramped) start. As expected, agreement is
better at Re = 2 than Re = 40, and it improves at large times and large radii. In figure
8, streamwise velocity profiles at x = t (i.e. through the centre of the transition zone)
are plotted for similar conditions, showing excellent agreement at Re = 2, t = 100,
but a very poor match at Re = 40 for all times. Close to the cylinder, particularly
at Re = 40, flow velocities are greater in the numerical solutions because of stronger
recirculation in the near wake, as mentioned above. This is also seen in figure 9,
which compares centreline velocities along the wake. In the region 0 < x < U2t
the centreline velocity −u in the model decays as x−1/2, and for x > U2t as x−2, in
accordance with the effect of a source at the cylinder and a sink at the transition zone.
The locations of the source and the wake origin are the same as those in figure 5.

The force on the cylinder may be estimated from the asymptotic model on a
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 7. Instantaneous streamlines at time t after an impulsive start. Plots on the left are computed
from the asymptotic model, those on the right from the Navier–Stokes code; (a, b) Re = 2, t = 10;
(c, d) Re = 2, t = 100; (e, f), Re = 40, t = 10; (g, h) Re = 40, t = 100. The stream function interval
is 0.2 in (a–d), and 0.1 in (e–h). The plots extend to a radius of 20 at t = 10, and 120 at t = 100.
The undisturbed flow has been subtracted in all cases.
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Figure 8. Instantaneous velocity profiles across the wake through the centre of the transition zone
x = t, at various times t after the flow was started from rest: (a) Re = 2, (b) Re = 40. Solid lines
were computed from the asymptotic model (23), broken lines from the Navier–Stokes code.
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Figure 9. Wake centreline velocities at t = 40 after a start. Broken lines are from the Navier–Stokes
code; full lines from the asymptotic model. Results for Re = 10 and 40 are shifted down by one and
two decades respectively. The source at the cylinder and the wake origins are located as in figure 5.
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Figure 10. The transient part of the force on the cylinder at time t after the flow is impulsively
started. Broken lines are from the Navier–Stokes code; full lines from the asymptotic model. Results
for Re = 10 and 40 are shifted down by one and two decades respectively.

quasi-steady basis by considering the incident flow to be incremented by the velocity
that the transition zone induces at the location of the centre of the cylinder. The
instantaneous drag coefficient is similarly taken to be that corresponding to the
Reynolds number 2[U2 + uz(0, 0, t)]c/ν. For large U2

2 t/4ν the effect at the cylinder of
the transition zone is predominantly that of a sink of strength Q2 at x = U2t, and the
resulting transient force decays ultimately as t−1. This is consistent with the long-term
behaviour of results for all Reynolds numbers as shown in figure 10, which plots the
transient parts of the forces F(t) obtained from the asymptotic model and from the
Navier–Stokes code. At Re = 2 they become indistinguishable beyond t = 250, but at
higher Reynolds numbers the asymptotic model clearly underestimates the unsteady
part of flow in the wake (as seen for Re = 40 in figure 7).
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(a) (b)

(c) (d )

(e) ( f )

Figure 11. Streamlines at time t after an impulsive stop. Plots on the left are computed from
the asymptotic model, those on the right from the Navier–Stokes code; (a, b) Re = 2, at t = 100;
(c, d) Re = 10, and (e, f) Re = 40, both at t = 20. The stream function intervals are 0.2 at Re = 2,
otherwise 0.1. The plots extend to a radius of 100 in (a, b), otherwise to a radius of 20.

The stop

After an impulsive stop (U2 = 0) that occurs long after an impulsive start, the
apparent origin of the old wake (previously at the cylinder) propagates to the left
with speed U1. The downstream end of the old wake (far to the right of the cylinder)
is stationary. A second transition zone (containing a diffusing source) develops at the
cylinder between the profile of the asymptotic wake on the right and the undisturbed
fluid on the left. At the centre of this transition zone the net flow past the cylinder is
one-half of that of the returning wake (which diffuses laterally), in accordance with
(23). Streamlines computed on this basis for the flow after an impulsive stop are
shown in the left hand column in figure 11. On the right are shown the corresponding
results from the Navier–Stokes code. In this case the flow was stopped when it had
run for 500 units of time after the initial start. Agreement between asymptotic and
numerical models is very good at Re = 2, at t = 100 after the stop (figure 11a, b),
but larger differences appear at earlier times and at higher Reynolds numbers. At
Re = 40 a reverse wake appears in the numerical solution that cannot be captured
by the asymptotic model (figure 11f).

The transient force may be calculated from the asymptotic model as described
before, and figure 12 compares the results with those from the Navier–Stokes code.
At large t, (23) and (9) point to −F ∝ 1/t1/2 ln (t), and this is in agreement with
the results, though in all cases the asymptotic model seriously under-estimates the
magnitude of the transient force. A significant factor may be that in the model, the
computation of the force neglects the considerable non-uniformity of the decaying
ambient flow around the cylinder, shown in figure 11.
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Figure 12. The force on the cylinder at time t after the flow is impulsively stopped. Broken lines
are from the Navier–Stokes code, full lines from the asymptotic model. Results for Re = 10 and 40
are shifted down by one and two decades respectively.

The reverse

After an impulsive reverse (U2 < 0) the flow that existed after the stop is convected
to the left, and in addition a new wake is generated in that direction with a transition
zone at its end (containing a diffusing sink). The elements of a global model therefore
comprise the two superimposed transition zones at x = U2t (where t is measured
from the time of the reverse), a new wake U2t < x < 0 (with its origin at the cylinder
and mass flux to the right), the old wake extending to the right from x = U2t (with
its apparent origin at x = (U2 − U1)t and mass flux to the left), and a source at the
cylinder.

Figure 13 compares streamline plots after a reverse with U2 = −U1 and similar
remarks apply as before. In the model the strength of the growing wake to the left
of the cylinder is attenuated by the fact that it is generated by the ambient flow
alone, without any enhancement due to the old wake. The transient part of the
force is plotted in figure 14, and in this case agreement with the numerical solution
is better than for the start and the stop. As expected at large times −F ∝ 1/t1/2;
the downturn at t ∼ 500 results from the fact that the starting point in these
calculations was the state of motion at 500 units of time after an impulsive start. It
seems likely that agreement between asymptotic and numerical models in this case is
improved fortuitously by the greater width of the downstream wake in the latter, and
a consequent reduction in the velocity of the flow approaching the cylinder.

6. Arbitrary changes in the incident flow
The asymptotic model can be adapted to cover cases in which the ambient flow

U(t) is a continuous function of time. If the unsteadiness is represented as a series
of step changes, the wake comprises a number of segments, each with a distinct
reverse flux Qi, as sketched in figure 15. The interface between the segments at each
xi reflects an earlier step change in the incident flow speed at time τi and is convected
downstream with the ambient motion so that xi =

∫ t
τi
U(τ)dτ. The ith wake segment

has a self-induced velocity towards the cylinder of Ui, so that its apparent origin is at
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(a) (b)

(c) (d )

(e) ( f )

Figure 13. Streamlines at time t after an impulsive reverse. Plots on the left are computed from
the asymptotic model, those on the right from the Navier–Stokes code; (a, b) Re = 2, at t = 100;
(c, d) Re = 10, and (e, f) Re = 40, both at t = 20. The stream function intervals are 0.2 at Re = 2,
otherwise 0.1. The plots extend to a radius of 100 in (a) and (b), otherwise to a radius of 20. The
undisturbed flow has been subtracted in all cases.
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Figure 14. The transient part of the force on the cylinder at time t after the flow is impulsively
reversed. Broken lines are from the Navier–Stokes code; full lines from the asymptotic model.
Results for Re = 10 and 40 are shifted down by one and two decades respectively.

xi −Ui(t− τi). The streamwise velocity at any point can be approximated as follows
as the sum of the three contributions identified above.

Taking first the case of non-reversing flows (U(t) > 0), (Q2 − Q1) in (19) may be
replaced by (dQ/dτ)dτ, leading to the following result for the streamwise velocity
at a point (x, y) due to the non-uniformity of the wake (or in other words to the
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TZQi + 1
Qi

xi
Ui (t – τi)

U (t)

Figure 15. Elements of the unsteady flow around a transition zone. ‘TZ’ indicates the transition
zone created by a step change in the flow speed from Ui to Ui+1 at time τi.

distributed transition zones):

uz(x, y, t) =

∫ t

−∞
dQ

dτ

{
x′

2π(x′2 + y2)

[
exp

(−(x′2 + y2)

4ν(t− τ)
)
− 1

]

+
erf [x′/2

√
ν(t− τ)]− sgn(x′)

4
√
πν(t− τ) exp

( −y2

4ν(t− τ)
)}

dτ, (24)

where x′ = x−∫ t
τ
U(s)ds. There is also a contribution to the flow from the asymptotic

wake profile at section x of

uw(x, y, t) = −Q(τ)

√
1

4πν(t− τ) exp

(
− y2

4ν(t− τ)
)
, (25)

where τ is defined by x =
∫ t
τ
U(s)ds.

The final contribution is that of the source at the cylinder

us(x, y, t) =
Q(t)x

2π(x2 + y2)
. (26)

As each transition-zone element progresses downstream, its contribution to the veloc-
ity at the cylinder tends to that of a sink of corresponding strength, as noted above.
Therefore the combined effect of the distributed transition zones is approximately

uz(0, 0, t) =
1

2π

∫ t

−∞

{
dQ

dτ

/∫ t

t−τ
U(s)ds

}
dτ. (27)

When the incident flow reverses, it is necessary to switch the sign of the integrand of
(24). For the general case then

uz(x, y, t) =

∫ t

−∞
sgn(U)

dQ

dτ

{
x′

2π(x′2 + y2)

[
exp

(−(x′2 + y2)

4ν(t− τ)
)
− 1

]

+
erf [x′/2

√
ν(t− τ)]− sgn(x′)

4
√
πν(t− τ) exp

( −y2

4ν(t− τ)
)}

dτ (28)

and (22) has to be replaced by

uw(x, y, t) =
∑
k

−Q(τk)

√
1

4πν(t− τk) exp

(
− y2

4ν(t− τk)
)

(29)

where the τk are the multiple solutions of x =
∫ t
τ
U(s)ds, up to a maximum of the
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Figure 16. Instantaneous streamlines for oscillatory motion of amplitude 50/π, maximum Re = 10.
Plots on the left are computed from the asymptotic model, those on the right from the Navier–Stokes
code. The stream function interval is 0.1, and the instantaneous incident flow has been subtracted
in each case. The plots extend to a radius of 50.

number of times the flow has reversed. All the elements of the starting, stopped and
reversed flows described in § 5 are captured by (28), (29) and (26).

In oscillatory flow, the conditions for which the model is best suited are likely to
be those of large amplitudes, since the wake matches the asymptotic profile only at
large distances from the cylinder. In figure 16, streamlines are shown at intervals of
one-quarter of the period for an oscillatory ambient flow U = sinωt starting from rest
with a displacement amplitude of 50/π cylinder radii (corresponding to a Keulegan–
Carpenter number K = 2π × amplitude/diameter = 50) and a maximum Reynolds
number of 10. The asymptotic model captures many features of the numerical solution,
though as before the induced flow in the former is weaker.

The corresponding drag forces are plotted in figure 17(a). Besides the result from the
asymptotic model, computed as described above, and that of the Navier–Stokes code,
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Figure 17. (a) The drag on the cylinder in an oscillatory flow starting from rest with a displacement
amplitude of 50/π (K = 50), and maximum Re = 10. The results labelled ‘quasi-steady’ are computed
from the instantaneous incident velocity and the corresponding steady-state drag coefficient; (b) the
undisturbed incident velocity and the induced velocity at the cylinder.

from which the inertia force 2πU̇ was subtracted, figure 17(a) also shows the quasi-
steady force obtained from the instantaneous velocity and the corresponding steady-
state drag coefficient. The difference between this and the results of the asymptotic
model is the history force.

When the incident velocity passes smoothly through zero, a rapid change occurs
in the induced velocity predicted by the asymptotic model at the location of the
cylinder’s centre. The induced velocity is shown in figure 17(b) and the effect of
the rapid change, which is caused by the newly generated wake being swept back
upstream, is evident in the forces shown in figure 17(a). However, unlike the cases of
impulsive changes to the incident flow, here there is no discontinuity in the induced
velocity itself, and the force remains bounded at all times. The asymptotic model
accounts for a large part of the difference between the numerical solution and the
quasi-steady prediction.

7. Conclusions
An asymptotic model of unsteady rectilinear flow around a cylinder in the enforced

absence of vortex shedding is compared with the results of numerical modelling at
Reynolds numbers up to 40. Agreement is inferior to that found in the case of a
sphere by Mei & Lawrence (1996), but nevertheless the model captures many features
of the flow and the loading, and provides a basis from which history forces may
be calculated. Following an impulsive start, stop and reverse, the transient part of
the force decays ultimately as t−1, [t1/2 log (t)]−1 and t−1/2, respectively. In cases of
oscillatory flow, the model correctly reproduces the characteristics of history forces
that are generated by the cylinder encountering its own wake. Applications at higher
Reynolds numbers would require some empirical intervention.
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Appendix. Unsteady solution for the transition zone
Figure 2(b) shows the structure of the flow at a time t after a change in velocity

from U1 to U2. The transition zone between the old wake and the new wake is at
x = U2t, where x is measured from the origin of the new wake, a point assumed to
be at the cylinder. The old wake was stationary when the incident flow speed was U1,
and so after the change it propagates downstream with velocity U2−U1. The region to
the left of the transition zone is dominated by the new wake, while that to the right is
dominated by the old, whose origin is at (U2−U1)t. Using a velocity profile of the form

U − Q
√

U

4πνx
exp

(
−Uy

2

4νx

)
(A 1)

at a section in each wake x from its origin, the velocity on the left of the transition
zone (relative to the incident flow U2) is

uTZL = − Q2

2
√
πνt

exp

(
− y2

4νt

)
(A 2)

while that on the right (x = U1t) is

uTZR = − Q1

2
√
πνt

exp

(
− y2

4νt

)
. (A 3)

It is seen that at the transition zone the old and new wakes have the same width,
but that there is a difference in the flow rates of Q2 − Q1. We derive a solution for
the two-dimensional matching flow (generally following the steps taken by Mei &
Lawrence for the axisymmetric case), beginning with the linearized vorticity transport
equation and shifting the origin of x to the centre of the transition zone,

∂ω

∂t
= ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (A 4)

A vorticity distribution ω(x, y, t) is sought that satisfies (A 4) with boundary conditions
to the left and right respectively

− Q2y

4
√
π(νt)3

exp

(
− y2

4νt

)
and − Q1y

4
√
π(νt)3

exp

(
− y2

4νt

)
(A 5)

from (A 2) and (A 3). A solution of the form ω = f(y, t)g(x, t) implies

g

(
ν
∂2f

∂y2
− ∂f

∂t

)
= f

(
∂g

∂t
− ν ∂

2g

∂x2

)
. (A 6)

It is easily shown that

f = − y

4
√
π(νt)3

exp

(
− y2

4νt

)
(A 7)

achieves a zero on the left-hand side of (A 6), and

g = Q1 + 1
2
(Q2 − Q1) erfc

(
x√
4νt

)
(A 8)
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achieves one on the right. From the vorticity ω = fg the next step is to calculate
the velocity components and stream function. From the continuity equation and the
definition of vorticity, it follows that

∂ω

∂x
=
∂2v

∂x2
+
∂2v

∂y2
(A 9)

and from (A 7) and (A 8),

∂ω

∂x
=

(Q2 − Q1)

8(νt)2
y exp

(
−x

2 + y2

4νt

)
. (A 10)

Equating the right-hand sides of (A 9) and (A 10) leads to a solution of the form

v =
Q2 − Q1

2π

y

x2 + y2
exp

(
−x

2 + y2

4νt

)
. (A 11)

The definition of vorticity then leads to the following expression for u:

u =
Q2 − Q1

2π

x

x2 + y2
exp

(
−x

2 + y2

4νt

)
− 1

2
√
πνt

×
[
Q1 + 1

2
(Q2 − Q1) erfc

(
x

2
√
νt

)]
exp

(
− y2

4νt

)
. (A 12)

The right-hand sides in (A 11) and (A 12) reflect the presence of a singularity at the
centre of the transition zone that can be removed by the addition of an irrotational
sink there (while still satisfying the boundary conditions) of strength Q2 − Q1. The
streamwise velocity component in the transition zone is then

uTZ =
Q2 − Q1

2π

x

x2 + y2

{
exp

(
−x

2 + y2

4νt

)
− 1

}

− 1

2
√
πνt

[
Q1 + 1

2
(Q2 − Q1) erfc

(
x

2
√
νt

)]
exp

(
− y2

4νt

)
(A 13)

(with a similar adjustment to (A 11)) from which it follows that the stream function
is

ψTZ =
Q2 − Q1

2π

{∫ y

0

x

x2 + y2
exp

(
−x

2 + y2

4νt

)
dy − arctan

(y
x

)}
−1

2

[
Q1 + 1

2
(Q2 − Q1) erfc

(
x

2
√
νt

)]
erf

(
y

2
√
νt

)
, (A 14)

making ψ = 0 on y = 0. The transition zone solution may be merged into the wakes
to left and right by subtracting its limiting values (A 2) and (A 3) from (A 13), and
adding the respective wake profile of the form (A 1). Thus for x 6 0 and x > 0 the
combined flows are respectively

uL = uTZ − uTZL − Q2

√
U2

4πν(x+U2t)
exp

(
− U2y

2

4ν(x+U2t)

)
(A 15)

uR = uTZ − uTZR − Q1

√
U1

4πν(x+U1t)
exp

(
− U1y

2

4ν(x+U1t)

)
. (A 16)
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